Extensions 1→N→G→Q→1 with N=C22 and Q=C13⋊C4

Direct product G=N×Q with N=C22 and Q=C13⋊C4
dρLabelID
C22×C13⋊C452C2^2xC13:C4208,49

Semidirect products G=N:Q with N=C22 and Q=C13⋊C4
extensionφ:Q→Aut NdρLabelID
C22⋊(C13⋊C4) = D13.D4φ: C13⋊C4/D13C2 ⊆ Aut C22524+C2^2:(C13:C4)208,34

Non-split extensions G=N.Q with N=C22 and Q=C13⋊C4
extensionφ:Q→Aut NdρLabelID
C22.(C13⋊C4) = C13⋊M4(2)φ: C13⋊C4/D13C2 ⊆ Aut C221044-C2^2.(C13:C4)208,33
C22.2(C13⋊C4) = C2×C13⋊C8central extension (φ=1)208C2^2.2(C13:C4)208,32

׿
×
𝔽